FREE CONVECTION IN AN IMMERSED PLANE JET
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We investigate the free convection in a plane immersed jet by the method of self~-similar
and nonself-similar solutions. The derived solutions are valid both for a heated and a
cooled jet.

Let us examine the flow of a plane laminar jet directed vertically upward from a long narrow slit in-
to a space containing the same nonmoving gas. We will assume that the jet impinges with some momentum
dg [1]. The free convection produced by the temperature difference in the jet leads to additional motion.
Given a small temperature difference between the jet and the ambient medium, for this problem we can use
the boundary-layer equations, introducing the additional force associated with the existing temperature dif-
ference into the equation of motion.

According to [2], the basic equations will have the following form

ou ou 0%
uW_’_Ua—y‘——'Va—yg—]"gﬁTmay (1)
ou du
o T =0 @)
ae e "8 3
u —-5)—6‘ + 1) *a—y—' = a "—'ayz . )
The boundary conditions are the usual ones [1]
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Using the boundary equations, we introduce the stream function, so that (1) and (3) are written in the
following form:
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1. In seeking the self-similar solution, we will present the stream function and the dimensionless ex-
cess temperature in the form

V=50fm), 8=pxe) 1=0®y. (7

Having substituted (7) into system (5) and (6), we obtain
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x0'f'e — % ple" = apog”, ©)

where the primes denote differentiation with respect to the argument of the given function.

Let us first attempt to determine the generalized self-similar solution [3]. It can be demonstrated
that such a solution exists only for Pr = 2. Here we should bear in mind that the resulting solution for a
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325 vanishingly small temperature difference must become
the solution for a jet without free convection [1]. It is
therefore natural to assume that

f=thn, @ = sech.

Then, to determine w, X, and p, we obtain the fol-
/ . lowing system of ordinary differential equations:
%P = —4apo, xp' + 4y'p= 20 apw,
-2 -f 0 ! 2 3 Gr/re?

, (10)
oy (@) — ghT=p = — 2vyw®
Fig. 1. Graph showing 2Z as a function of After simple transformation, we obtain for the
Gr/Re®. solution of system (10)
1/3
55 o (1treee)
L1 2N gyom ' ~

20y v a 212 ’

3 Gr 173
) ( L+ ga? P
- 4 T 15 H
3. 32 Toay'v

(11)

A8 = g1,

where
2, ‘ 174 3/4
5 2 A (1 2) B dz = L-§_> - (I%) ,

0
r—2 _4_'('5711)“ o= ;.’p_)”"’
13 \Re ) \16 o)

The numerical results are shown in Figs. 1 and 2. In analyzing (11) we must consider two cases. In the
first, the temperature of the medium is higher than the temperature of the jet (Gr/Re® <0). The jets are
decelerated under the action of free convection, and there exists a section in which the jet is completely stag-
nated (GI‘/R62 =—2.09). In the second case, the jet temperature is higher than that of the ambient medium.
As a consequence, of convection, the penetrating power of the jet is increased.

With a large value for Gr/Re?, in the integral following (11) we can neglect unity as small in compari-
son with z,, and we can represent the expression for z, in the explicit form
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An exponential relationship is found between the basic quantities and x in (11) in this case. Thus we
see from this special example that the solutions derived in [2] are applicable only at a great distance from
the source. However, reference [2] contains an inaccuracy in the determination of the constants. It can be

demonstrated (in the notation of [2]) that in this problem there is only one constant 4 which has to be de-
termined from the constancy of Hy in the jet, i.e.,
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The resulting basic relationships (Pr = 2) derived from [2] in the determination of ¢ from (13) coin-
cide with (11) in the determination of z; from (12) and with the use of the condition z; > 1.

2. There is considerable interest in an examination of free convection for other values of the Pr num-
ber; this is true particularly for air (Pr = 0.72). Here it is natural to turn to the nonself-similar methods
of solution.

Since there is generally some interest in the limited effect exerted by free convection on the discharg-~
ing jet, we can propose a method of solution that is close to the self-similar [4]. Let us present the stream
function ¥(x, y) and the excess temperature difference ®(x, y) in the form of the series
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Fig. 2. Graph showing Uy, as a function of Gr/Re?:
1) Pr = 0.72; 2) 1.0; 3) 2; 4) 5; a) exact solution for Pr
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Fig. 3. Graph showing u/uy,,. as a function of £: 1) Pr = 0.72;
2) 1.0; 3) 2; 4) 5; a) exact solution for Pr = 2,

Fig. 4. Graph showing ®/@,,, as a function of {: 1) Pr = 0.72;
2) 1.0; 3) 2; 4) 5; a) exact solution for Pr = 2.

TABLE 1. Values of the Basic Jet Characteristics

Pr 0.72 1,0
n 0 T 0 { 1 [ 2
F,,’(co) 1,0000 0,2522 0,4312 1,0000 0,1250 —0,0768
F,(0) 1,0000 0,2678 | —0,0506 1,0000 0,2500 —0,0417
n (0) 1,0000 |~—0,0758 0,0263 1,0000 —0,0538 0,0105
Pr 2,0 5.0
n 0 T 0 ‘ 1 | 2
Fn’(w) 1,0000 0,0357 0,0006 1,0000 0,1000 —0,0001
Fy(0) 1,0000 0,2143 | —0,0307 - 1,0000 0,1687 -—0,0203
tn (0) 1,0000 |—0,0357 0,0498 1,0000 —0,0259 0,0029

v =200 Y (g ) Fo®)
n=0 (14:)

_ Ht 1 - / 1 .- Gl‘ n
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Substituting these series into (5) and (6), and equating the coefficients for identical powers of Gr /Re?,
we find a system of ordinary differential equations for the determination of Fn() and 'rn(é)

443



1
2

Fo —1,4

N U 1 40 Fog Fo— (1 + 40 FyFo] =
k=0 5)

n
r

. , 1
; [(— 14 48) Froyty — (L + 4B) Fyv'oi] = —p— -
=0
For F;(¢) and 7,(£) we find solutions from the corresponding self-similar probiem [1] without free
convection:

Fo(8) =thE, 7,(E) = sech?rE.

According to the general method outlined in [5] for problems of free jet discharge, the system of
equations (15) can be reduced to a system of successively solved Legendre equations. The solution is then
found in quadratures as the particular integral of the corresponding nonuniform equation, in particular for
Pr=1:
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The numerical solution of Egs. (15) was undertaken for various values of Pr, and we obtained the
first two approximations. Figures 3 and 4 show the graphs for u /u,, ., and ®/Oyax. In Fig. 2 we com-
pare the derived exact solution with the approximate solutions. Table 1 gives the numerical values of the
basic characteristics of the jet.

Because of the impossibility of calculating a large number of terms in series (14), there is some
interest in applying the nonlinear Shanks [6] transform to the {irst three terms of the exponential series

(14). The calculations for amax were accomplished with such a transformation, and it yielded better agree-

ment for Pr = 2 with the exact solution than arithmetic summation (Fig. 2).

NOTATION
x and y are Cartesian coordinates;
£= ayx2/3/3/v is a dimensionless self-similar coordinate;
uandv are velocity components in the directions of the x~ and y-axes;
v is the coefficient of kinematic viscosity;
g is the acceleration of the force of gravity;
B is the coefficient of thermal expansion;
a is the coefficient of thermal diffusivity;
T is the temperature of the external medium;
T-To/Te =6 is the dimensionless excess temperature;

Hp =2 g u(T —T,)dy is the excess heat content;

Pr=v/a is the Prandtl number;

Gr =(gB6% /AT is the Grashof number;

Re = u6/v is the Reynolds number;

uy = 2a2xY/3 /3 is the characteristic velocity in similarity criteria;

0= 3wfvx2/3/ o, is the characteristic dimension m similarity criteria;

AT = (Hi /2B

(1/2, 1 + Pr) is the characteristic temperature difference in similarity criteria;
B(a, b) is the beta function.
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